Name: \quad Date: \quad Period: \quad Seat \#:

Show all work and/or explain using chemistry principles
[1] A solution of salt (molar mass $90 \mathrm{~g} \mathrm{~mol}^{-1}$) in water has a density of $1.29 \mathrm{~g} / \mathrm{mL}$. The concentration of the salt is 35% by mass. Assume a 100 mL sample.
a. Calculate the molarity of the solution. 5.0 M
b. Calculate the total number of moles in the solution. 4.0 mol
c. Calculate the mole fraction of the salt in the solution. 0.10
[2] Ethylene glycol $\left(\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2} ; 150\right.$ grams $)$ is added to ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} ; 250\right.$ grams $)$.
a. Calculate the mass \% of ethylene glycol in the solution. 37.5%
b. Calculate the mole fraction of ethylene glycol in the solution. 0.31
[3] Concentrated sulfuric acid contains very little water, only 5.0% by mass. It has a density of $1.84 \mathrm{~g} / \mathrm{mL}$. What is the molarity of this acid? 17.8 M
[4] The lattice energy of a salt is $350 \mathrm{~kJ} / \mathrm{mol}$ and the solvation energies of its ions add up to $320 \mathrm{~kJ} / \mathrm{mol}$ for the preparation of a 0.50 M solution. In the preparation of this solution would the solution get colder or warmer? What is the driving force for this solution process?
[5] Addition of excess sodium nitrate to water to form a saturated solution results in the following equilibrium. The solution process is endothermic. $\mathbf{N a N O}_{3}(\mathbf{s}) \Leftrightarrow \mathbf{N a}^{+}(\mathbf{a q})+\mathbf{N O}_{3}{ }^{-}(\mathbf{a q})$
How could the concentration of sodium nitrate in the solution be increased? Explain why \& why not for each. Choose the answer
a. add more NaNO_{3} (s)
b. increase the pressure on the solution
c. increase the temperature
d. stir the solution more vigorously
[6] Ethanol and methanol form an almost ideal solution. If 64 g of methanol is mixed with 69 g of ethanol, what is the total vapor pressure above the solution? 70.7 torr $\left[P_{\text {methanol }}^{\circ}=90\right.$ torr $; P_{\text {ethanol }}^{\circ}=45$ torr $]$

